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The interestiag. .article by Archer, Sapuppo, and Betteridge") leads 

to the problem of deternining the  opthum l i f t  d i s t r ibu t ion  along the  Oriag 

during flapping motion. Adopting the 8asumptioPe nede i n  Ref. 1, the  

problem may be reduced t o  one of minimizing the Induced drag for a 

specifzed, periodically varying, bending moment at the Wing rmt. The 

wing-root bending mOment should be of primary importance to a b i rd  o r ,  

fo r  that matter, t o  a mechanical flapplng machine, since it  is at t h i s  

point tha t  most of the flapping energy is introduced. 

To solve t h i s  problem we adapt a technique mployed by Prandtl  and 

Mumk. Assume at f i r s t  that no ne t  l i f t  is specified,  tha t  i a ,  the  w h g  

is used so le ly  fo r  propulsion. We seek t o  detersline the load dis t r ibu-  

t ion  R(y) that minimizes the vortex drag Diwith a given bending moment 

M. 

6R(p), will produce no f i ra t -order  c-e i n  Di o r  M. 

tione are involved, it is ouff ic ient  to consider two discre te  elements 

Assume t ha t  R(y) is given. Then 6mall variat ions in the  shape, 

Since two condi- 

of var ia t ion (see Fig. 1) . The added drag will have three components. 

(1) The drag of the added d is t r ibu t ion  6Rln6R2 in the  downwash 

wi of the or ig ina l  load die t r ibu t ion  R(y). 

~~ 

* 
Senior Staff Sc ien t i s t .  
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(2) The drag of the o r ig ina l  d i s t r ibu t ion  in the  downwash of the  

added dis t r ibu t ion .  

(3) 

According t o  Hunk's reciprocal  theorem ( the  ''mutual drag" theorem) , 
The drag of the  added d i s t r ibu t ion  alone. 

items (1) and (2) are equal; hence we need consider only item (1). 

Item (3) is proportional to  the  square of the  added l i f t  and hence does 

not contr ibute  t o  the  f i rs t -order  variation. We then have the  equations: 

(1) 

( 2) 

6alpl + 642~2 = 0 ( for  bH 0 )  

+ 6L2w = 0 ( for  6Di = 0)  
6 W i l  $2 

se equations w i l l  be  s a t i s f i e d  f o r  a l l  posi t ions 

&e 

Th 

where ui is a constant. Thus, we see tha t  f o r  minippulp drag i n  flapping 

motion the  induced downwash should vary l i nea r ly  along the span; t ha t  

is, the  vortex trace of the  wing should liylve as a r ig id  surface hinged 

at the  wing toot .  

I n  Nunk's or ig ina l  problem, the  total  l i f t  and the  wing span were 

given. 

should be constant along the  span or, i n  other  words, the  vortex trace 

of the wing should move downward as a r i g i d  surface. 

w e l l  f o r  wines having more complex shapes i n  f ront  view, such as g u l l  

wings o r  wings with "winglets." Bete even extended t h i s  idea t o  

propel lers ,  showing that f o r  minimum energy lo s s  the vortex t race  of a 

propeller should move backward as a r ig id  hel ix;  the  poten t ia l  flow 

rolut ion f o r  t h i s  motion was found by Goldstein. 

There it was found that fo r  minimum drag the induced downwash 

This holds as 

That such ideas 
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should p e r s i s t  in the  case of flapping motion is therefore  not  e n t i r e l y  

unexpected. 

The extension of eqn. (3) t o  more complex shapes, such as gul l  

wings, is eas i ly  accomplished by introducing the  appropriate cosines 

i n t o  eqns. (1) and (2). In such cases it is found tha t  minimum energy 

l o s s  o r  drag occurs when the wake  moves so as t o  s a t i s f y  the  boundary 

condition of an impermeable surface having the  shape of the  ving t r cze  

and executing a similar motion. 

In eqn. (2) we assumed that t he  vortex drag could be calculated by 

considering an induced downwash wi at the wing. This assumption limits 

our calculat ion t o  wings of high aspect r a t i o  and t o  cases i n  which the  

wave length of the  flapping motion is long compared with the  wind chord. 

A still simpler s i tua t ion  arises i f  we consider very slow flapping such 

tha t  the wavelength is l a rge  compared with the  wing semispan (as assumed 

i n  Ref. 1).  In  t h i s  case, the  motion of the wake is approximately two- 

dimensional and conventional induced-drag theory can be used. 

Adopting the latter assumption, we have t o  f ind the spanwise load 

d is t r ibu t ion  tha t  corresponds t o  a l i nea r  var ia t ion of the  induced 

dowrrwash wi/V. 

we  obtain (see 

Using the  standard inversion formula of a i r f o i l  theory 

Ref.  2) 

f o r  the  idea l  d i s t r ibu t ion  of c i rcu la t ion  I’ during elow flapping (see 

Fig. 2). Here s is the wing semispan; it w i l l  be seen from eqn. (3) 

3 



that t h ~  quantity aki8/V 18 tha dowwuh am&le vi/V 8t the u b g  t ip .  

If AS is the additional l i f t  coef f ic ien t  d u a g  flapping we s b t h  

’ 3 --- v u t A %  a 

I f  we let b e  the angular v e l ~ l t y  of the  flapping Plotion then- wy 

will be the  vertical veloci ty  of the  m t i o n  at J. 

thrust orill be 

The’h tan taneous  

Averaging over a cycle  and forming the coef f ic ien t  

T c,- - s p  S 

we fiad 

(0 - Wi)S Q) 8 

$7 V V 
- i M  8 

1 

where w and wi are now paaximm values. The eff ic iency is 

(7) 

where M is the  bending mmnt.  

the r a t i o  of the  angular velocity induced by the  wake t o  the  angular 

The l o s s  of efficiency *a thus e-nplg 

veloci ty  of the wing. 

the epan. Introducing eqn. ( 9 )  i n t o  (8) we find 

A t  its maxiparm the  eff ic iency is constant along 
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which l e  a simple equation connecting the  thn r r t ,  t h e  e f f i c imcy ,  and the 

t i p  he l ix  angle. 

ciency. 

(eqn. (4)) compared with tha t  determined i n  Ref. 3 fo r  an e l l i p t i c  load- 

Figure 3 shows the  r e l a t ion  between thrus t  and e f f i -  

Figure 4 shows the  eff ic iency given by the  optimum loading 

ing. It w i l l  be noted tha t  fo r  a given value of th rus t  there  are two 

possible values of t he  eff ic iency,  the lower value evidently correspond- 

ing t o  an excessively high l i f t  coeff ic ient .  

Expressing wi i n  terms of t he  addi t ional  l i f t  (eqn. ( 5 ) )  we find . 

which shows the  influence of aspect ra t io .  Integrat ion over a periodic 

cycle shows that the eff ic iency is a maximum when the incremental l i f t  

ACL is in phase with the  upward or  downward veloci ty  of the wing t i p .  

Hence, A% and w in eqn. (10) may be  maximum values during the cycle. 

However, for  bes t  eff ic iency the l i f t  increment should be small and the 

vertical veloci ty  of the wing t i p  lsrge-leading t o  ra ther  la rge  angles 

of twist during flapping, as found in Ref. 1. 

The exact angle of twist required t o  obtain t h e  optimum loading 

w i l l  depend on planform of the  wing. To compute t h i s  w e  make use of the 

where Ct is now the  loca l  l i f t  coef f ic ien t  and c the loca l  wing chord. 

In addition we have 

where Aa i e  the  gaometric twist angle introduced during the flapping. e 
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Figure 5 Bhows curves of a /(ws/V) fo r  e l l i p t i c  wings of AR = 6 and 10. 

It appears t ha t  the  optimum twiot fo r  the e l l i p t i c  wing is almost l i n e a r ,  

conforming t o  the  flapping motion. 

angle of a t tack  appears to  be  needed a t  the  wing root.  

w i l l ,  of course, be influenced by the  planform shape of the  wing. 

8 

However, a small addi t ional  pos i t ive  

This var ia t ion  

A complete analysis  of t he  motion of a b i rd  would involve v e r t i c a l  

motions of the  body i n  addition t o  the  pure flapping motion considered 

here. Such vertical motions w i l l  not only influence the optimum twist 

d i s t r ibu t ion ,  but w i l l  a l so  contr ibute  d i r ec t ly  t o  the  propulsion-possibly 

i n  a negative sense. 

Since the  flapping wing is also normally used f o r  support, it is 

necessary t o  consider the  poseible "interference drag" between the  

steady, supporting l i f t  and the  a l te rna t ing  l i f t  due t o  flapping. 

According t o  Munk's reciprocal  drag theorem w e  need t o  consider only 

one term of the  interference drag. 

d i s t r ibu t ion  i n  the downwash f i e l d  of a l te rna t ing  d is t r ibu t ion ,  it is 

easy t o  see tha t  the  interference is zero when averaged over a cycle, 

s ince the  downwash of the  added d is t r ibu t ion  is a l t e rna te ly  pos i t ive  

and negative. 

Taking the drag of the  steady 

It is of i n t e re s t  t o  compare the  values of th rus t  given i n  Fig. 3 

with those required by a bird fo r  steady f l i g h t .  

f l i g h t  we must have 

To maintain l eve l  

'T 'D 

The drag ceef f ic ien t  of a well streamlined la rge  b i rd  might be as low 

as 0.025. Assuming an aspect r a t i o  of 8, 
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For a t i p  veloci ty  r a t i o  of 0 . 3 ,  the  propulsive efficiency is about 

87%. 

It has been suggested tha t  the optimum load d i s t r ibu t ion  during 

steady (nonflapping) f l i g h t  would b e  the  e l l i p t i c  loading. However, as 

shown i n  Ref .  2, a 15% reduction of induced drag can be achieved f o r  

the  same bending moment by adopting a mora tapered form f o r  the steady 

component of t he  load d is t r ibu t ion .  

wings of b i rds  discourages generalization, t h i s  f ac t  may explain why 

long-flying species, such as the  gu l l  and the  Frigate bird,  have more 

tapered wings. 

Although the var ie ty  seen i n  the  

The foregoingeanalysis is eas i ly  extended t o  the case of a propeller 

operating a t  a l a rge  advance angle. In  t h i s  case, we are in te res ted  i n  

the  ro l l i ng  moment o r  t x q u e  ra ther  than the  bending moment of the wing 

root. 

by eqn. (3) is now antisymmetric instead of symmetric and the absolute 

value sign on y is removed. The wake then revolves as a r i g i d  h e l i c a l  

s t r i p ,  i n  agreement with the Betz-Goldstein r e su l t .  

Equations (1) and (2) remain the same but the  "downwash" given 

The optimum spanwise loading i n  t h i s  case is simply 

r = 4 (+>) , 

giving the th rus t  coef f ic ien t ,  
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where TI is the  efficiency. As i n  t he  case of flapping, t he  induced 1088 

is the r a t i o  of half  the angular ,velocity of the  f a r  wake t o  the angular 

veloci ty  of the  wing o r  blade. 

Under the assumptions of slow flapping, or slow turning of the  

propeller, the  normal sl ipstream l o s s  considered i n  the actuator d i s c  

theory (Froude theory) w i l l  be  negligible. 

"rotational inflow" considered here. 

be substant ia l ly  overcome by using counterrotating propellers i n  tandem. 

The primary l o s s  is  the  

As is  w e l l  known, t h i s  l o s s  may 

The pr inciple  of the counterrotating propeller could be extended 

t o  wing f l a p p i n g a  mode t h a t  might be termed "counterflapping." Two 

wings i n  a close tandem arrangement and moving i n  opposite phase would 

eliminate the  induced losses  we have calculated here. It is i n t e re s t ing  

tha t  t h i s  mode of propulsion does not appear i n  nature-except possibly 

iu the aragonfly (see Ref. 4). 

8 



REFERENCES 

1. 

2. 

3. 

4. 

ARCHER, R. D.; SAPUPPO, J.; and BETTERIDGE, D. S. Propulsion 

characteristics of flapping wings. 

Royal Aeronautical Society, September 1979. 

JONES, R. T. 

induced drag of wings having a given l i f t  and a given bending 

ament NACA TN 2249, 1950. 

BETTERIDGE, D. S .  and ARCHER, R. D. 

flapping wings. 

DALTON, STEPHEN. The miracle of fliaht. McGraw-Hill, New York, 

1977. 

Aeronautical Journal of th, 

The spanwise distribution of l i f t  for minimum 

A study of the mechanics of 

Aeronautical Quarterlx, May 1974. 

9 



FIGURE CAPTIONS 

Figure 1. Variational problem for flapping with rninimura energy. 

Figure 2.  

Figure 3. 

Ideal distribution of the additional lift during slow fjlapping. 

Thrust and eff ic iency at different v a u e s  of the t i p  velocity 
* 

rat io. 

Figure 4 .  

9 0.3. 

E l l i p t i c  loading and optimum loading ionpared [i kh] w s / V  

Figure 5 .  Angle of twist during flapping e l l i p t i c  planform: n = S O X .  
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Fig. 5 

15 


